If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7.056=c^2
We move all terms to the left:
7.056-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+7.056=0
a = -1; b = 0; c = +7.056;
Δ = b2-4ac
Δ = 02-4·(-1)·7.056
Δ = 28.224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{28.224}}{2*-1}=\frac{0-\sqrt{28.224}}{-2} =-\frac{\sqrt{}}{-2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{28.224}}{2*-1}=\frac{0+\sqrt{28.224}}{-2} =\frac{\sqrt{}}{-2} $
| 39.99p+0.45p=44.99p+0.40p | | 39.99p+0.45=44.99p+0.40 | | x–(-4)=11 | | 4002/z=46 | | 150/6.28=r | | -6(2k-3)=10 | | 15y=45;y | | 9x+11=16x-13 | | 6p-25=41 | | 45=9(h+3) | | -1.2n=12 | | w+15/5=7 | | -4.9x^2+4.8x+0.1=0 | | -10(k-96)=-10 | | n/1.65=5 | | 79=5w+24 | | t+16/6=5 | | 33=m−51 | | 55h=55h+5 | | 10m-15m=40 | | 0.26w=0.676 | | 55=5(z+5) | | x(0.1x-5)=0 | | 12v-19=7v+16 | | 8f=1/4 | | 10=0.2x^{3}-5. | | 15a-5=a+9 | | 2x=42–20 | | t+16/8=4 | | -18=-9+x/2 | | 17+(-5j)=52 | | Y=14x+82 |